Koopman Operator Approach for Instability Detection and Mitigation

IEEE International Conference on Intelligent Transportation Systems

Esther Ling*, Lillian Ratliff**, Samuel Coogan*

* Georgia Institute of Technology** University of Washington

100 118 - MAU 100 11

Georgia School of Electrical and Tech Computer Engineering

The Traffic Control Loop

Image source: Sensys Networks

- Can we automate detection of imminent traffic congestion?
- Can we make datadriven models to "predict" effect of the control strategy?

Outline

Koopman Operator review

- Two Applications:
 - Early detection of congestion
 - Capturing effect of signal timings in queue model

Koopman Operator

 Given a nonlinear discrete-time system

$$z_{k+1} = g(z_k)$$
$$x_k = f(z_k)$$

- Koopman Operator U
 - Linear
 - Infinite-dimensional

$$f(z_{k+1}) = \mathcal{U}f(z_k)$$

Evolution of States

Evolution of Functions on States (Observables)

Approximating an Infinite-Dimensional Operator using Data

$$X_{1} = \begin{bmatrix} | & & | \\ x_{1} & \dots & x_{N-1} \\ | & & | \end{bmatrix} X_{2} = \begin{bmatrix} | & & | \\ x_{2} & \dots & x_{N} \\ | & & | \end{bmatrix}$$

Suppose the sensor measurements are realizations of the observables

Dynamic Mode Decomposition

DMD: "approximate \mathcal{U} using proxy matrix A by learning a locally-linear model"

$$X_2 = AX_1$$
$$A = X_2 X_1^{\dagger}$$
$$= X_2 V \Sigma^{-1} U^T$$

Abrupt decay in singular values

If *A* is large, high compute cost to perform eigen-decomposition:

- Use rank truncation in SVD ($\tilde{r} \leq r$)
- Use projection $\tilde{A} = U^T A U$

Koopman Operator Applications

Instability Analysis

Eigenvalues

 $|\lambda| > 1$

Indicates unstable dynamics

Prediction

$$x_{k+1} \approx A x_k + B u_k$$

Learn dynamics to predict future traffic

Spatio-temporal Information

Modes

$$\Psi = X_2 \tilde{V} \tilde{\Sigma}^{-1} W$$

Provides relative spatio-temporal information

The Traffic Control Loop

Image source: Sensys Networks

- Can we automate detection of imminent traffic congestion?
- Can we make datadriven models to "predict" effect of the control strategy?

Outline

- Koopman Operator review
- Two Applications:
 - Early detection of congestion
 - Capturing effect of signal timings in queue model

- Local instability analysis to detect congestion
- How local? Specify the range of data to include, N
- Learn dynamics (A) in a rolling window
- Keep track of consecutive unstable eigenvalues

- Local instability analysis to detect congestion
- How local? Specify the range of data to include, N
- Learn dynamics (A) in a rolling window
- Keep track of consecutive unstable eigenvalues

- Local instability analysis to detect congestion
- How local? Specify the range of data to include, N
- Learn dynamics (A) in a rolling window
- Keep track of consecutive unstable eigenvalues

- Local instability analysis to detect congestion
- How local? Specify the range of data to include, N
- Learn dynamics (A) in a rolling window
- Keep track of consecutive unstable eigenvalues

Normal Day

Accident Day

Outline

- Koopman Operator review
- Two Applications:
 - Early detection of congestion
 - Capturing effect of signal timings in queue model

Effect of signal timings in queue model

- Notice that the queue starts to clear at 3.30pm
- Scheduled change in timing plan at 3.30pm
- Did the extended green time for congested leg play a role?

Phases	1, 5	2, 6	4, 8	Phase Time (s)	1, 5	2, 6	4, 8
	10	47	45		23	- 55	44

Effect of signal timings in queue model

Learn A and B using original x_k and u_k

- Do A and B learn a good model? Reconstruct {x₂,..., x_N} using initial condition x₁ and {u₁,..., u_N}
- What is the effect of a modified phase-split?
 Reconstruct {x₂,..., x_N} using initial condition x₁ and modified {u₁,..., u_N}

 $x_{k+1} \approx A x_k + B u_k$

 $x_k \in \mathbb{R}^4$

$$u_k = \begin{bmatrix} u_k(1) \\ u_k(2) \\ \vdots \\ u_k(12) \end{bmatrix}$$

where

$$u_k(i) = \begin{cases} 0, & \text{if } u_k(i) = \text{red} \\ 1, & \text{if } u_k(i) = \text{green or yellow} \end{cases}$$

Effect of signal timings in queue model

- Longer green times for congested leg \Rightarrow faster queue mitigation
- Can visualize effect on all 4 legs with one model

Queue Plots for Congested Legs (longer green time)

Queue Plots for Congested Legs (shorter green time)

Legend

Blue = Original queues

Red = Reconstructed queues using original signal phases

Green = Reconstructed queues using modified signal phases

Summary and Q&A

- Koopman Operator framework for data-driven modeling
- Applications:
 - Automated early detection of traffic congestion
 - Modeling queue dynamics with signal phases to anticipate effect of modified phase-splits
- Future Directions:
 - What is an adequate amount of green time extension?
 - Model is currently intersection-level. Can this be extended to include a network-level model?